Chapter 7 LEARNING MECHANISMS IN NETWORKS OF SPIKING NEURONS

نویسندگان

  • QingXiang Wu
  • Martin McGinnity
  • Liam Maguire
  • Brendan Glackin
  • Ammar Belatreche
چکیده

In spiking neural networks, signals are transferred by action potentials. The information is encoded in the patterns of neuron activities or spikes. These features create significant differences between spiking neural networks and classical neural networks. Since spiking neural networks are based on spiking neuron models that are very close to the biological neuron model, many of the principles found in biological neuroscience can be used in the networks. In this chapter, a number of learning mechanisms for spiking neural networks are introduced. The learning mechanisms can be applied to explain the behaviours of networks in the brain, and also can be applied to artificial intelligent systems to process complex information represented by biological stimuli.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological and Functional Models of Learning in Networks of Spiking Neurons

Neural circuits generally process information in a massively parallel way and exhibit a communication between the constituent units based on spikes, i.e. binary events, therefore differing fundamentally from many artificial information processing and learning systems. In such neural circuits, synaptic plasticity is widely considered to be the main biophysical correlate of learning. This thesis ...

متن کامل

Modeling with Spiking Neural Networks

This chapter reviews recent developments in the area of spiking neural networks (SNN) and summarizes the main contributions to this research field. We give background information about the functioning of biological neurons, discuss the most important mathematical neural models along with neural encoding techniques, learning algorithms, and applications of spiking neurons. As a specific applicat...

متن کامل

Learning in Spiking Neural Assemblies

We consider a statistical framework for learning in a class of networks of spiking neurons. Our aim is to show how optimal local learning rules can be readily derived once the neural dynamics and desired functionality of the neural assembly have been specified, in contrast to other models which assume (sub-optimal) learning rules. Within this framework we derive local rules for learning tempora...

متن کامل

Supervised and unsupervised weight and delay adaptation learning in temporal coding spiking neural networks

Artificial neural networks are learning paradigms which mimic the biological neu­ ral system. The temporal coding Spiking Neural Network, a relatively new artifi­ cial neural network paradigm, is considered to be computationally more powerful than the conventional neural network. Research on the network of spiking neurons is an emerging field and has potential for wider investigation. This rese...

متن کامل

Transformation-invariant visual representations in self-organizing spiking neural networks

The ventral visual pathway achieves object and face recognition by building transformation-invariant representations from elementary visual features. In previous computer simulation studies with rate-coded neural networks, the development of transformation-invariant representations has been demonstrated using either of two biologically plausible learning mechanisms, Trace learning and Continuou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006